Efficient Estimation in Marginal Partially Linear Models for Longitudinal/Clustered Data Using Splines

نویسنده

  • JIANHUA Z. HUANG
چکیده

We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and nonparametric part of the model have properties parallel to those of parametric GEE, that is, the estimates are efficient if the covariance structure is correctly specified and they are still consistent and asymptotically normal even if the covariance structure is misspecified. By showing that our estimate achieves the semiparametric information bound, we actually establish the efficiency of estimating the parametric part of the model in a stronger sense than what is typically considered for GEE. The semiparametric efficiency of our estimate is obtained by assuming only conditional moment restrictions instead of the strict multivariate Gaussian error assumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data

We consider marginal generalized semiparametric partially linear models for clustered data. Lin and Carroll derived the semiparametric efficient score function for this problem in the multivariate Gaussian case, but they were unable to construct a semiparametric efficient estimator that actually achieved the semiparametric information bound. Here we propose such an estimator and generalize the ...

متن کامل

Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data

We consider the problem of simultaneous variable selection and estimation in additive, partially linear models for longitudinal/clustered data. We propose an estimation procedure via polynomial splines to estimate the nonparametric components and apply proper penalty functions to achieve sparsity in the linear part. Under reasonable conditions, we obtain the asymptotic normality of the estimato...

متن کامل

Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data

We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration ...

متن کامل

Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data.

We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As p...

متن کامل

Efficient Estimation in Partially Linear Single-Index Models for Longitudinal Data

In this paper, we consider the estimation of both the parameters and the nonparametric link function in partially linear single-index models for longitudinal data which may be unbalanced. In particular, a new three-stage approach is proposed to estimate the nonparametric link function using marginal kernel regression and the parametric components with generalized estimating equations. The resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006